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We consider the correlation functions of vorticity w in the region of the direct cascade in a steady
two-dimensional turbulence. The nonlocality of the cascade in k space provides for logarithmic
corrections to the expressions obtained by dimension estimates, and the main problem is to take
those logarithms into account. Our procedure starts directly with the Euler equation rewritten
in the comoving reference frame. We express the correlation functions of the vorticity via the
correlation functions of the pumping force and renormalized strain. It enables us to establish a set
of integrodifferential equations which gives a logarithmic renormalization of the vorticity correlation
functions in the inertial interval. We find the indices characterizing the logarithmic behavior of
different correlation functions. For example, the two-point simultaneous functions are as follows:
(w™(r1)w™(r2)) ~ [P21n(L/ | r1 —rz |)]>™/3, where L is the pumping scale. We demonstrate that the
form of those correlation functions is universal, i.e., independent of the pumping. The only pumping-
related value which enters the expressions is the enstrophy production rate P,. The contributions
related to pumping rates P, of the higher-order integrals of motion are demonstrated to be small in
comparison with the ones induced by P.. We establish also the time dependence of the correlation
functions, the correlation time 7 in the comoving reference frame is the same for the vorticity and
strain and is scale dependent: 7 o In?/3(L/r). We reformulate our procedure in the diagrammatic
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language to reinforce the conclusions.

PACS number(s): 47.10.4+g, 47.27.Gs

INTRODUCTION

Remarkable feature of incompressible fluid turbulence
is the presence of an essential interaction between eddies
of strongly different scales due to a sweeping of small
eddies by large ones. Such interaction manifests itself
differently in two and in three dimensions. In the three-
dimensional case, it was shown that sweeping has strong
effect upon the time dependencies of the correlation func-
tions while the simultaneous velocity correlators are de-
termined by a dynamical interaction which is local in
k space [1-3]. Due to simple geometrical reasons, the
sweeping has stronger consequences in two rather than
in three dimensions. Even if one considers simultaneous
correlators, logarithmic infrared divergences are present
for the spectrum E(k) oc k=2 obtained for a vorticity cas-
cade from a dimensional analysis [4]. The presence of the
divergences means that the nonlocal interaction should
play a substantial role in shaping the energy spectrum.
Since the powers of the logarithm increase with the or-
der of perturbation theory, then a renormalization of the
spectrum might occur. All the more difficult, though
necessary to formulate a consistent theory, is to study
time correlations. By presuming weak time correlations
and using a one-loop approximation, Kraichnan found
the spectrum Ej ~ k~3In~'/3(kL) [4]. This estimate
can be obtained also by different uncontrollable closures
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assuming weak phase coherence (see [5] and references
therein). A natural question arises: does the account of
higher orders and of (at least substantial) time correla-
tions destroy this spectrum.

After summation, those logarithms could, in principle,
change the exponent —3 in the energy spectrum. The al-
ternative exponents —4 and —11/3 suggested by Saffman
(6] and Moffatt [7] cannot thus be rejected from the gen-
eral point of view. Moreover, there has been even for-
mulated the viewpoint that the small-scale asymptotics
are not universal in two-dimensional (2D) turbulence so
that one encounters different scaling laws under the dif-
ferent conditions of excitation [8]. This possibility may
be associated with the existence of an infinite number of
integrals of motion (which are powers of the vorticity w)
in the 2D inviscid dynamics. By varying the pumping
statistics, one changes the inputs of different integrals
which could drastically change the character of the lead-
ing contributions to the correlation functions of w. For
example, such a nonuniversality would take place if the
direct 2D cascade is described by the theory of conformal
turbulence [9]. The condition of conformal invariance is
so restrictive in 2D that, for a given conformal model, it
prescribes scaling exponents as well as numerical prefac-
tors for all correlation functions, the choice of the model
being related to the peculiarities of the pumping.

Here, we prove that a steady direct cascade is univer-
sal in two dimensions, in contrast to those expectations.
Our conclusions are based on the formalism starting di-
rectly from the Euler equation and enabling us to express
any correlation function of w via the pumping. We see
that all simultaneous correlation functions tend to uni-
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versal small-scale limits that depend only on one number
determined by the pumping: the input rate P, of the
enstrophy (squared vorticity).

Our theory is a consistent formalization of the gener-
ally accepted physical picture of the vorticity cascade: a
fluid blob embedded into a larger-scale velocity shear is
extended along the direction of a positive strain value
and compressed along the direction of a negative one;
such stretching provides for the vorticity flux into the
small scales with the rate of transfer proportional to the
strain. Vorticity rotates the blob decelerating stretching
due to interchange of the axis of a positive and nega-
tive strain. We show that vorticity correlators indeed
are solely determined by the influence of larger scales,
which can be described in terms of the tensor of velocity
derivatives with a symmetric part (strain) and an anti-
symmetric one (vorticity). The problem of determining
vorticity spectrum in the inertial interval turns thus to
be the problem of passive scalar [11-13] advected by the
velocity field produced by the previous (larger) scales.

As one passes into smaller scales, the effective vortic-
ity and strain that act on the scalar are renormalized.
To find the law of renormalization one should take into
account time correlations between the velocity gradients
produced by different spectral intervals. The sketch of
the present theory has been published before [10] where
we found, in particular, that the form of the pair correla-
tor is the same whether you presume a short correlation
time of the renormalized strain or a long one. This is as-
sociated with the fact that the renormalized interaction
vertex is of the order of its bare value: not only a power-
like but even a logarithmic renormalization of the vertex
is absent. Recent numerics confirm the prediction on the
spectrum [14]. The true spectrum thus coincides with
Kraichnan’s prediction although the approximation of a
short correlation time is not correct. Here, we demon-
strate that the universal regime corresponds to an op-
posite “slow” case: correlation times are logarithmically
large in the inertial interval (in the locally comoving ref-
erence frame). Because of a simple stretching nature of
spectral transfer, the typical strain correlation time will
be shown below to be of the order of the time of spec-
tral transfer. Note that the remarkable persistence of
the local straining has been experimentally observed by
Townsend more than forty years ago [15] and was not
theoretically proved until now. We demonstrate that by
a direct calculation of the correlation times of the strain
and vorticity.

Our problem thus turns out to be that of a scalar (vor-
ticity) advected by a slow velocity field (with the corre-
lation time much larger than the turnover time). That
problem is shown here to be solvable in 2D: one can write
any vorticity correlation function expressed via the av-
erage of the known function of the strain and vorticity
itself. Those expressions form an infinite set of integro-
differential equations for the correlation functions. We
cannot solve the equations directly (i.e., we cannot find
the correlation functions exactly with a numerical fac-
tor) yet we can establish the homogeneity property of the
probability distribution function that should satisfy the
set of the equations. The self-similar solution is logarith-
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mic and we can explicitly write in the main logarithmic
approximation the expression for any correlation function
up to a dimensionless numerical factor. We obtain the
logarithmic renormalization of the strain and vorticity,
which makes the procedure self-consistent since it actu-
ally enables one to neglect the interaction of modes with
comparable scales in comparison with the stretching by a
larger-scale velocity field. Note that our conclusions are
obtained, strictly speaking, only for a steady turbulence
with vorticity pumping.

It is well-known that two-dimensional turbulence may
contain isolated long-living vortices [16]. We show that
the main contribution into the small-scale tails of the cor-
relation functions is provided by the low-vorticity regions
between the vortices and the form of the correlation func-
tions is insensible to the presence of large-scale isolated
vortical structures.

The structure of the paper is as follows. We formulate
the problem in Sec. I. In Sec. II, we consider an auxiliary
(vet important by itself) problem of passive scalar advec-
tion by an external large-scale velocity field, paying the
main attention to the case of a slow velocity. In Sec. III,
we find renormalization law of the stretching rate for the
direct cascade utilizing the same ideas as for the passive
scalar problem. It enables us to establish the character
of even correlation functions of vorticity. In Sec. IV, we
consider the problem of an infinite number of integrals of
motion in 2D turbulence and the related problem of the
structure of the odd correlation functions of w. We intro-
duce the notion of a “distributed” pumping and explain
why only the enstrophy flux is constant in the inertial
interval of scales. In Conclusion, we shortly enumerate
the results and applicability conditions of our theory and
discuss how universality appears at small scales. Our
theory does not imply that other (nonlogarithmic) solu-
tions cannot exist. However, even if such spectra could
be matched with some sources of special form (which is
yet unclear) they should be structurally unstable with re-
spect to pumping variations that produce logarithmic tail
which provides for the main contribution at small scales.
There are also two Appendices devoted to some techni-
cal details. In Appendix A, we give the diagrammatic
justification of the procedure developed in Secs. III and
IV. In Appendix B, we formulate some integral relations
enabling us to transfer the vorticity correlation functions
into the strain correlation functions and to prove that
the correlation times of the vorticity and of the strain
coincide.

I. FORMULATION OF THE PROBLEM

We consider the structure of the correlation functions
of the 2D turbulent vorticity w = curlu in the iner-
tial interval of scales r determined by the inequalities
L,;s < 7 < L, where L is the characteristic length of
the pumping force and L,;, is the viscous length. This is
just the interval of scales where the direct cascade occurs
and where it is possible to neglect the viscous term in
the Navier-Stokes equation. We consider the Euler equa-
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tion containing the random external force ¢(t,r) acting
on the vorticity:

Ow + ueVow = ¢, (1.1)

where 0; = 0/0t. Our aim is to express small-scale
asymptotics of the vorticity correlation functions in a
steady turbulent state via the correlation functions of
¢. To eliminate homogeneous sweeping, we pass to the
locally comoving reference frame introducing the quasi-
Lagrangian (qL) velocity v(t,r) related to the Eulerian
velocity u as

ut,r) = v (t,r - /t dt’v(t’,O)) .

The presence of a marked point r = 0 makes the theory
spatially nonuniform in qL variables [2,3]. We do not
know of a way to pay a lower price for sweeping elimina-
tion. The equation (1.1) in qL variables takes the form

(1.2)

Ow + (Vo — Voa)Vaw = ¢ , (1.3)

where voq = v4(t,0). Note that simultaneous correlators
are the same for both sets of variables.

The source ¢ can be assumed to be §-correlated in time
in the qL variables. The point is that the turbulent ve-
locity usually contains scales larger than L so that the
mean turbulent velocity Vp is determined by the largest
scale while the strain and the vorticity are determined by
the eddies with the scale L. This means that the typi-
cal correlation time of ¢ in the comoving frame is L/V,,
which is much less than the turnover time of L eddies
whatever be the correlation time of ¢ in the laboratory
frame. Physically this corresponds to accounting for the
existence of the inverse cascade which is unavoidable in a
consistent theory of the direct cascade [17]: if the inverse
cascade was absent (say, by pumping the largest scale in
the system) then the direct cascade might be different
from what is discussed in this paper.

II. PASSIVE SCALAR STRETCHING

As a first step, we consider an advection of the passive
scalar by a long-range velocity. In addition to being
a paradigm for the further consideration of the vorticity
cascade, this problem is interesting by itself. Examples
of 6 are the temperature field or the concentration of im-
purities in the fluid. Since the velocity is assumed to
be independent of the scalar then there are two different
characteristic scales in the problem: the length L; de-
termines the characteristic size of “heaters” that are the
sources of the passive scalar and the length L, determines
the smallest scale of the advecting velocity. The formal-
ism developed in this section is correct for small-scale
asymptotics of the correlation functions of the passive
scalar 0 realized at scales r < L, where L = min(L;, L3).
Since we will neglect the diffusion of the passive scalar
6 the applicability condition of our theory is L4y < L,
where Lg;y is the diffusive length. This situation is real-
ized, e.g., in the viscous-convective range at large Prandtl
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number Pr (viscosity to diffusivity ratio), where the role
of L, is played by the viscous length L,;,. The general
theory of random advection in two dimensions has been
developed in [13], here we briefly review the principal
ideas of our approach. The main attention will be paid
to the case of a slow advecting velocity since just this case
is closely related to the problem of vorticity cascade.
The dynamic equation for the passive scalar 8 formally
coincides with the Eq. (1.1), where instead of the vortic-
ity w (which is a scalar in 2D), we take 6 and treat the
velocity as a long-range one, this means that the velocity
contains only wave vectors ¢ < L~!. We will designate
this velocity by V. After passing to qL variables, we get
the equation
0,0 + (Va - %a)vag =4¢, (2‘1)
analogous to (1.3). Further, we proceed in the spirit of
Kraichnan’s approach [12]. For the points with | r |[< L,
one can expand V,(t,r) — V,4(t,0) in the series over r,
the first nonvanishing term of this expansion is g45(t)rg,
where o,5(t) = VgV, at r = 0. Keeping only this term,
we find
0,0(t,r) + 00a(t)rgVal(t,r) = ¢(t,r). (2.2)
A solution of this equation can be represented in the
following form

8(t,r) = / " (¢ (e, )Y, (2.3)

where the matrix w is an antichronological exponent
[12,10,13] which satisfies the equation
Gpi(t,t') = 6(tw(t,t), (2.4)
with the initial condition @(t,t) = 1. Due to incompress-
ibility, the matrix & is traceless so it can be expressed via
three scalar functions: 0z, = —0yy = @, 0,y = b+, and
0yz = b—c. The independent random processes a(t), b(t),
and c(t) are stationary with zero mean. Respective cor-
relation functions of a and b coincide due to isotropy.
First, we examine the expression for the correlation
functions following from (2.3) to recognize what kind of
information we should extract from (2.4). By using (2.3),
the correlation functions of the scalar 6 in the locally
comoving reference frame can be rewritten in terms of
the given correlation functions of the pumping integrated
along the fluid path. The source ¢ can be assumed to be
é correlated in time in the qL variables, the reasons for
this were discussed in the Introduction. We thus write
(b(r1,t1)@(r2,t2)) = Pox(|r1 —r2|)d(ts —t2), (2.5)
where the function x(r) describes spatial correlations of
the pumping. We put x(0) = 1 then the constant P,
in (2.5) is the production rate of a squared scalar. The
expressions analogous to (2.5) can be written also for
higher-order correlation functions of the force ¢, those
functions being related to the pumping rates of higher-
order integrals of motion. The simultaneous pair corre-
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lation function of @ can be found from (2.3)

oo

(O(t1,r00(t1,72)) = Pa( [ dsx( pltst =) 1))

(2.6)

where p(t1,t) = @(ty,t)(r1 —rz) and (...), denotes the
average over the statistics of & that is over the statistics of
a,b,c. Averaging with respect to the statistics of both the
external velocity gradients & and of the external source
¢ is implied in the left-hand side of (2.6).

At calculating (2.6), we can put simply x(z) = 1 for
z < L and x(z) = 0 for > L since the account of any
given shape of x(z) will give the same results with the
logarithmic accuracy. Then

Fy = (0(t1,r1)0(t1,12)) = Pa7i(r12) ,

where 7, is an average value of time ¢ which is necessary
for p to grow from ri3 =| r; — rz | to L at increasing
¢ in (2.6). To find the time 7., which can be called the
spectral transfer time, one should solve the equation

(2.8)

(2.7)

6€pa(t11t1 - () = —0aBpPB,

following from (2.4): the initial condition for this equa-
tion is p(t1,t1) = r1 — r2. The equation (2.8) can be
rewritten in the polar coordinates p = (pcos ¥, psin¥):

o.p=ap, 9.9 =[0F+c, (2.9)

where

a = —acos(29) — bsin(29), [ = asin(29) — bcos(29) .

It is remarkable that the equation for ¥ is separated, it
can be treated as a constrain enabling us to express the
angle ¥ via the fields a,b. After that is done, the equation
(2.9) for p becomes a scalar equation with the solution
t
In[p(t1,t)/7] = dt’ a(t'). (2.10)
t
Thus, we have reduced our matrix problem to the
scalar one. Since the right-hand side (r.h.s.) of (2.10)
is an integral over time then the statistics of In(p/r) is
asymptotically Gaussian for ¢; — ¢t much larger than the
correlation time of the random process a(t’). Note that
the same procedure with the same conclusion on asymp-
totic local Gaussianity is correct for the stretching prob-
lem in the space of arbitrary dimension d. The com-
plete analysis of the solution of the equations (2.2-2.10)
is published elsewhere [13]. It is demonstrated, in par-
ticular, that for quite an arbitrary random velocity field,
the mean stretching rate (Lyapunov exponent),

t
T N
A= tli)lgo A a(t')dt' /¢,

is positive. That means that the stretching is exponential
so that the stretching time 7, depends on the distance
712 logarithmically as well as the correlation function —
see [13] and (2.14) below. Here, we describe in more
detail the particular case of the slow velocity field since
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it will arise in the next sections at the consideration of
the nonlinear problem. The notion of the slow-velocity
field implies that the correlation time 79 of 6 is much
larger than the characteristic value of a= 1,671, ¢~ 1.

For a slow &, there are two different regimes described
by the equation (2.9). The first one is realized if a®+b% >
c2. In this case, the r.h.s. of (2.9) has two fixed points
for ¥, only one of which is stable. The value of ¥ reaches
this point for the time of the order of (a® + b?)~! and
then adiabatically adjusts to the fixed point slowly dis-
placing at variations of a, b, c. The value of the stretching
rate o corresponding to this point is Va2 + b2 — ¢2 and,
therefore, the contribution to the r.h.s. of (2.10) due to a
region a® +b% > c? is [ dt'v/a? + b2 — 2. In the opposite
case a? + b% < c? the solution of (2.9) has a nearly pe-
riodic character with the period T = 27 //c? — a? — b2,
which varies slowly with time. Then a will be also a
nearly periodic function. The contribution to the r.h.s
of (2.10) is associated with deviations of (a) from zero
which are small in T/79. The inequality T < 7 is vio-
lated only near a point where a? + b? = c2, the vicinity
of these points will produce a contribution to the r.h.s.
of (2.10) of order unity which can be neglected with our
logarithmic accuracy. Therefore, we conclude that

In[p(t1,t)/7] = [ " Vaz(t) +b2(t) — c2(t'), (2.11)

where the integration is taken only over the regions where
a? + b2 >

This result can be obtained also in another language.
Differentiating (2.8) and neglecting 8,0 comparing to o2,
one obtains the equation d?p/ds? + 6%2p = 0. And here
a little miracle happens in 2D: Due to incompressibility,
42 is proportional to a unit matrix so that we reduce the
matrix equation to a scalar one which can be written in
the form

3%(pe +ipy) = (a® +b% — ) (pz + ipy) - (2.12)
One can consider (2.12) as a Schrédinger equation for a
particle in a random potential U = a2 + b% — ¢?; the vari-
able ¢ plays the role of coordinate. The statement about
an exponential stretching is a direct analog of the state-
ment about the localization in a random one-dimensional
potential. Our limit of a slow strain corresponds to a qua-
siclassical regime so that p(s) can be calculated by using
semiclassical approximation. Classically forbidden and
allowed regions should be considered separately, which
corresponds to the two regimes examined above. In the
classically allowed regions, U < 0 and the wave function
oscillates while in the classically forbidden regions U > 0
and the wave function grows exponentially. The rate of
the amplitude growth can be found using only exponen-
tial factors associated with classically forbidden regions,
which immediately gives (2.11). Note that this expres-
sion is invalid for p, + ip, which corresponds to a bound
state (or is close to it) when p grows and then decays as ¢
increases. The probability of such a coincidence is small
and consequently (2.11) can be used at the statistical
treatment (for the rigorous proof, see, [13]).
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The physical meaning of the above analysis is quite
clear. The value U = a? + b2 — ¢? is equal to the squared
strain minus the squared vorticity. The distinction be-
tween the hyperbolic regions (U > 0) with a predominant
strain and the elliptic regions (U < 0) where rotation
dominates has been introduced by Weiss [18]. It is clear
that long-living vortices have U < 0 and give no contri-
bution into the stretching rate.

Since the r.h.s. of (2.11) is an integral over time then
it is a self-averaging quantity which at t; — ¢ — oo has a
sharp maximum near (t; — t)A, where

A = Re(

a? + b2 — c2) (2.13)

Therefore, the value of In(p/r) determined by (2.11) can
be estlmated as A(t; — t), which means that the time
7. in (2.7) is equal to A~!In(L/r12). Thus, we come to
the Batchelor-Kraichnan expression for the simultaneous
pair correlation function

= (6(r1)0(r2)) = L

_ 2.14
|r —ra | ( )

For (2.14) to be correct, the time 7, = A~'In(L/r;3) of
the spectral transfer should be larger than the correlation
time 1o of &, which is true for sufficiently large values of
In(L/ry3). The correlator (2. 14) corresponds to Fa(k) =
P, /K2 in the k space, this gives E(k) < k73.

The nonsimultaneous correlation functlons of 6 also
can be obtained from (2.3). Using the expression (2.5),
we find that the pair correlation function is

(0:05) = P, /_ dt (X[ (b, ')rr — b (ta, t')ra]).

(2.15)

where ¢ = min(t;,%;). As above, the value of the corre-
lation function is determined by the characteristic time
which is needed for the argument of x in (2.15) to in-
crease to L. For sufficiently small r; and r;, when this
characteristic time is larger than 79, the absolute values of

W(t1,t")r; and w(tz,t’)rz in (2.15) can be approximated
by exp[A(t; — t')]r; and exp[A(tz — t')]rs, respectively. If

T1 ~ 72 then the argument of x in (2.15) will be deter-
mined by the largest of two times ¢; and ¢, say, ¢; (then
t = t3). In this case, the integration over ¢’ in (2.15) is
within the interval t; —A~11n(L/r;) < ' < t5. Therefore,
with the logarithmic accuracy

(0(t1,r1)0(t2,r2)) = Pz [X—IID(L/’I‘I) - (tl — tz)] N

(2.16)

which implies t; > t3, ry ~ r2. The expression (2.16) is
correct if A='In(L/r1) > (t; —t3) > A~1,7,. Note that
the correlation function (2.16) does not depend only on
the difference r; — r; since we lost the homogeneity at
passing to the comoving reference frame. We see that the
correlation time 7 of the passive scalar @ in this frame
is logarithmically large independently of the correlation
time 7o of &, namely, 7 = A 'In(L/r). Note that the
field of the passive scalar change substantially at a given
spatial point during the typical turnover time, i.e., A~!

3887

while in the frame comoving with the fluid blob that field
is long correlated at small scales.

Many-point correlation functions of § can be extracted
from the same relation (2.3). For example, the four-point
correlation function is as follows

t1 t2 ts ty
(0102650,) = / dt, / dt, / dt, [ dt,($rdadsda).

(2.17)

The reducible part of (¢1¢2¢3¢4) gives the contribution
to (61602036,), which is a product of the pair correlation
functions (2.16). In the contribution supplied by the ir-
reducible part of (¢;$2¢344), there will be only one inte-
gration giving a logarithmic factor so that in the convec-
tive interval it is small in comparison with the product of
the pair correlation functions proportional to the squared
logarithm. The same is true for many-point correlation
functions of the order n < 7, /7o: the main contribution
to the correlation functions is supplied by their reducible
parts. It means that for a given convective interval de-
termined by the Prandtl number Pr the Gaussianity is
correct up to the number n ~ In Pr/(A7).

We conclude that for large enough Pr the local statis-
tics of the passive scalar 8 advected by a large-scale ve-
locity field appears to be asymptotically Gaussian irre-
spective of the statistics of the external influence ¢ and
of the statistics of the advecting velocity V,. The rigor-
ous proof of this statement and the analysis of the non-
Gaussian tails of the probability distribution at finite val-
ues of 7, /7o and InPr can be found in [13]. To avoid a
misunderstanding, note that the asymptotic Gaussianity
of the passive scalar is established by only temporal aver-
aging in the locally comoving reference frame. If there are
separate space regions with different values of the pump-
ing (the flow is nonergodic) and if one desired to average
with respect to such a superensemble, then Gaussianity is
lost while the logarithmic dependencies of the correlation
functions persist.

III. STRAIN RENORMALIZATION

Now let us turn to the nonlinear problem of describing
vorticity cascade. The velocity v is now connected to the
vorticity w:

Va(r) = €ay Vs / Priw()In(L/R)/2r,  (3.1)

with R = |r’ —r|. Therefore, the velocity v contains har-
monics of all scales from L to the viscous scale L,;, and
we cannot directly use the procedure which was devel-
oped in Sec. II, where we assumed that the advecting ve-
locity contains only the contribution of scales larger than
L. Nevertheless, the nonlinear problem can be solved al-
most by the same method as in Sec. II. Physically it
seems quite natural, since we deal with the advection of
the vorticity w(r) by the velocity of the eddies of scales
larger than r. Formally it is related to the logarithmic
character of the solution to be obtained.
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First, we introduce the function @ which describes
the distance between two fluid particles, one of which
is placed at the origin of the qL reference frame:

die=v(t,0) —v(t,0). (3.2)

Further, we will be interested in the function g(t1,t,r)
determined by (3.2) and by the initial condition
o(t1,t1,r) = r [more precisely it is the terminal condi-
tion since we will consider the solution of (3.2) at t < t,].
Now for the function @(t,r) = w(t, o(t1,t,r)), we find
from (1.3) that ;@ = ¢(t, @). Solving this equation and
using the initial condition w(t;,r) = &(¢1,r), we obtain

wlts,r) = /_ " dté(t elt,t,1)). (3.3)

This expression is a generalization of (2.3) for the non-
linear problem. Let us stress that the relation (3.3) is
formally exact. It expresses the fact that the vorticity is
a tracer in an inviscid flow.

To extract some additional information from the equa-
tion (3.2), we will make use of a slow (logarithmic) de-
pendence of vorticity correlation functions on r. The
velocity difference in (3.2) can be written as the integral
Vo —Voa = f dr;_,Vﬁva, where the integral is taken along a
curve connecting the point 0 to the point . With the log-
arithmic accuracy, the r’-dependent quantity Vgv, in the
above integral can be substituted by its value at r' = p.
Therefore, we arrive at the equation

9i0a(t1,t) = 0ap(t, 0)0s (34)
analogous to (2.4). The only difference is that now
0ag = Vpv, is o dependent, though this dependence
is logarithmic, that is very weak. Therefore, as well as
in the passive problem, the Eq. (3.4) leads to the expo-
nential growth of g at decreasing ¢ (what corresponds to
increasing t, — t), but the expression for the In(g/r) will
have the time dependence different from the passive case.

Note that turbulent motions of different scales con-
tribute to the dispersion of the particles. Scales smaller
than g lead to a turbulent diffusion (with separation dis-
tance growing as a square root of time) while random
advection by larger scales leads to an exponential in time
growth of the distance. For the solution to be obtained,
the main contribution into Lagrangian dispersion will be
due to advection by large scales.

Let us turn to the correlation functions of w. The di-
rect generalization of the procedure developed in Sec. II
is impossible. The problem is that at deriving the ex-
pressions of the (2.6, 2.14) type, we performed the in-
dependent averaging over the statistics’ of the pumping
“force” ¢ and of the velocity derivatives §. It is obvi-
ously incorrect in the nonlinear case since ¢ in (3.4) is
induced by the vorticity itself and, therefore, its statistics
is connected with the statistics of the force ¢ pumping
the vorticity. The expressions (2.6, 2.14) are linear with
respect to P;, while we expect the vorticity correlation
function to depend on the pumping rate in a nonlinear
way. To get similar expressions, we consider the varia-
tions of the correlation functions with respect to the en-
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strophy production rate P, (and other production rates
P,). The formulas for the variations, analogous to (2.6,
2.14, 2.17), are derived in Appendix A as some averages
over the statistics of 6. Of course, now these are not ex-
plicit expressions for the vorticity correlation functions
but complicated integral relations. Nevertheless, those
relations enable us to establish the character of r depen-
dence of the correlation functions.

We are starting with the variation of the pair correla-
tion function F of w which in accordance with the results
of Appendix A is

SF(ts,r1,ta,13) = 6Py / dt (x(p®)), ,  (3.5)

where p = o(t1,t,r1) — o(t2,t,r2), and the integration
over t in (3.5) is performed from —oo to min(ty,t2). The
function x figuring in (3.5) is defined as in (2.5) since the
pumping ¢ could be assumed § correlated in the locally
comoving reference frame. One should find the integral
over t in r.h.s. of (3.5) at a given realization of the field
& and then average over the statistics of 6. As it was in
Sec. II where the passive scalar problem was treated, the
integral f dtx is equal to the time 7, which is necessary
for p to grow up to L at increasing t; — t:

|p(min(t1,t2) —7u)| = L. (3.6)
Then we obtain from (3.5),
OF = 8P (140 - (3.7)

Therefore, before examining correlation functions of
w, we should establish the dynamic equation for p. The
evolution of the vector p figuring on the r.h.s. of (3.5) is
determined by (3.4). If the difference g, — @, is not small
in comparison with max(g, 02), we find from (3.4),

Oipa = 0ap(t, P)Ps - (3.8)
Indeed if @, ~ @, the expressions for 6(t, @,) and G(t, @,)
practically coincide due to logarithmic character of 6 and
can be substituted by (¢, p); if @; < o, or @, > @, the
equation for p will coincide with the Eq. (3.4) for the
larger value and we again return to (3.8). A solution of
the Eq. (3.8) should be obtained in two steps. Let t; > t2,
then we should first find the solution of the Eq. (3.4)
in the interval t; > t > t, with the initial condition
@,(t1,t1) = r; and then we should solve the Eq. (3.8) for
t < t; with the initial condition p(t2) = @,(t1,t2) — r2.
Then we can find 7. from the relation (3.6).

To find 7,, explicitly, we shall assume that the veloc-
ity gradients are long correlated and then demonstrate
it self-consistently on a solution found below. That as-
sumption is quite natural after it has been demonstrated
in Sec. II that the correlation time 7 of the passive scalar
0 is logarithmically large in the comoving reference frame.
The same is true also for the vorticity w (as it will be clear
from the solution to be obtained), although the depen-
dence of the correlation time 7 on the logarithm does
not coincide with the dependence of the correlation time
of the passive scalar 6. Since w is advected by the ve-
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locity (3.1) induced by the vorticity itself it is natural
to expect that the velocity gradients 0,5 have the same
correlation time as w. This cannot be taken for granted
since w is a Lagrangian invariant so it’s correlation time
in the comoving reference frame might be anomalously
large compared to the correlation time of other veloc-
ity derivatives. We prove that for a logarithmic regime
it is not the case. Starting from (3.1), we show that
the correlation time of the velocity gradients 0,3 indeed
coincides with the correlation time 7 of w and is, conse-
quently, logarithmically large. This proof can be found
in Appendix B. Here is an important difference from the
passive regime considered in Sec. II where the correlation
times of # and o are unrelated. Note that the assump-
tion that the strain is slowly varying along a particle path
with respect to the vorticity gradients has been formu-
lated earlier by Weiss [18]. We shall see below that the
assumption is statistically correct.

We thus deal with the case of a long correlated & that
has been analyzed in Sec. II for the passive scalar prob-
lem. It is convenient as in Sec. II to introduce three scalar
functions: 0., = —0yy = a, 0.y = b+c, and oy = b—c,
which are now r dependent. Solving the Eq. (3.8) for
the simultaneous case t; = t;, we find as for the passive
problem

In(L/r)
T = / d¢/
0

where r = |r; —r3|, £ = In(L/p) (recall that now a,b,c
are £ dependent) and t. is the total time when a2 + b2 <
c?. Consider now the different-time correlation function
regarding r; ~ 75 ~ r and ¢t; > t,. If the difference
t; — ta is larger than the characteristic time ~ a=1,5~1
than the value of p coincide with g, since at any given
time ¢, g1 > 2. Solving (3.4), we can determine p(t)
and then 7, from (3.6). We can do this by finding the
time needed for g; to change from r to L and subtracting
t1 — t3 since for the case ¢; > t; the time min(¢;,¢;) in
(3.6) is tz. The result differs from that given by (3.9) in
the value t; — t;. Using now the relation (3.5), we find

a®+b2—-c2+t., (3.9)

‘SF(t19r1a t21 r2)

In(L/r) df
=P, A \/ﬁ+t<_ltl_t2, a.

(3.10)

Let us now turn to higher-order correlation functions.
In this section, we will treat only even correlation func-
tions of the vorticity w since odd correlation functions
are small in comparison with even ones, as it will be
demonstrated in Sec. IV. This means that the probabil-
ity distribution function P(w) can be regarded as an even
functional of w in the principal logarithmic approxima-
tion.

The direct generalization of the above scheme enables
us to express the variations over P, of the high-order
correlation functions. Consider as an example the fourth-

order correlation function,
Fy = (w(t1,r1)w(tz, r2)w(ts, r3)w(ts, ra)) .

As it is demonstrated in Appendix A the variation of Fj
over P, is

6F4(t1’ rl7t2’ r2, t3a r3, t4a 1'4)

In(L/r)
= 6P2 <w3w4( %—
0 Va2 4+ b2 — ¢2

+t<—|t1—tz|)> +-e,
o

where 7 and t. are related to the points r; and r,, they
are defined as in (3.10), the dots in (3.11) designate the
sum of terms which can be obtained from the one pre-
sented in r.h.s. of (3.11) by making permutations of the
subscripts 1,2,3,4. The relations analogous to (3.11) can
also be formulated for higher-order correlation functions:
they will differ from (3.11) only by the number of w fields
appearing as the factors at the integral and by the num-
ber of permutations.

The r.h.s. of those relations are averages over the
statistics of & which is reduced to the statistics of w and,
consequently, they could, in principle, be expressed via
the whole set of correlation functions of w. Therefore,
we have arrived at an infinite set of the integrodiffer-
ential equations which cover the whole set of correlation
functions. The differential (with respect to P,) equations
should be solved with zero initial conditions at P, = 0
assuming fluid to be at rest without pumping. Note that
the solution will depend only on P, but not on high-
order pumping rates P,. We will justify this in Sec. IV
where we will demonstrate that contributions to the cor-
relation functions related to P, are small in comparison
with terms depending only on P;.

Thus, we formulated a possible way to find the proba-
bility distribution function P(w). Of course, it is impos-
sible to reconstruct P(w) explicitly but we can establish
some of its general homogeneity properties. We see that
the relations (3.10, 3.11) as well as all the corresponding
relations for high-order correlation functions are invari-
ant under rescaling

& — Z¢;

(3.11)

w— ZY3%; t— Z%/3¢, (3.12)
what implies a,b,c — Z/3a,Z1/3b, Z1/3¢c. For a self-
similar probability distribution, we can establish the de-
pendences of all correlation functions on ¢, e.g., (aa) o
£%/3. Moreover, since only one dimensional constant P,
enters our solution, we can estimate any even correlation
function up to a dimensionless factor. These estimates
can be extracted from the relation

w~ (Pp€)'/3, (3.13)
determining the characteristic value of the vorticity on
the scale r = Lexp(—¢). For example, the pair corre-
lation function (wjwsz) ~ (P€)?/3. That has a simple
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physical meaning: vorticity spectral transfer is due to
a renormalized strain so that, similar to (2.14): F =
(wiwz) = P2€/A(€). Here A(£) is the effective stretching
rate which can be estimated as A(£) ~ (P;¢)/® according
to (2.13).

The estimate for the correlation time 7 can be ob-
tained from (3.10): 7 ~ (P2£)%/3, which means A7 = ¢
as well as for the passive scalar problem. The above law
of the stretching rate renormalization leads to the fol-
lowing behavior of the distance between fluid particles:
In(p/7) ~ le /243/2 The time of the spectral transfer 7,
is then 7, = (Tu)e ~ P2—1/3€2/37 where £ = In(L/r). We
see that the time of the spectral transfer 7, is of the order
of the correlation time 7. This means, in particular, that
the velocity gradients (strain and vorticity) produced by
the motions of different scales are strongly correlated in
the locally comoving reference frame. That (together
with the analysis in Appendix B) gives a long-expected
theoretical substantiation for the experimental observa-
tion of Townsend [15] that the time scale of change of
the rates of strain and of the directions, relative to the
fluid, of the principal strain axes is large compared to
the time scale of straining. The persistence of the strain
is also suggested by numerous pictures [from the early
ones [19] to the recent ones [20], Fig. 1(b)] that show
that straining produces long thin streaks which do not
show the small-scale wriggles. Physically, that seems to
be connected with the fact that isovorticity lines tend to
set themselves locally along the direction of the positive
rate of strain as well as material lines in the passive scalar
problem as it was described by Batchelor [11]. It was a
3D case that was studied in [15], while two-dimensional
flows were considered in [19-21]. The reasons for the per-
sistence of strain should be qualitatively the same in two
and three dimensions, yet in our case the correlation time
grows with the Reynolds number logarithmically but not
by a power law as was supposed in [11]. Certainly, the
strain is not slow everywhere in space [see, e.g., [21], Fig.
3(c)], what we prove is that the strain is long correlated
in the regions that give the main contribution into the
vorticity cascade. Our proof is statistical. The dynamics
responsible for that is probably related to the fact that
regions around stagnation points should give the main
contribution into straining. The curvature of the pres-
sure field is nearly isotropic in those regions which guar-
antees that velocity gradients vary slowly with respect to
the vorticity gradients [21].

The coincidence of 7 and 7, implies also that there is no
reason for the statistics of w to be Gaussian. Indeed, the
local Gaussianity of a passive scalar 6 was found in Sec. II
to appear at 7, > 7o, where 79 was the correlation time of
&. The statistics of w appears, thus, to be essentially non-
Gaussian due to substantial fluctuations of the stretching
rate. Nevertheless, using the above arguments leading to
(3.13) it is possible to estimate up to a dimensionless
factor

an = ((.4.)1(4}2"'(4)2.,,) ~ Fn ~ (P2£)2n/3 N (3.14)
for even correlation functions F3, of the vorticity. This
estimate resembles the Gaussianity property proven for
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the passive problem (where it was possible to find the
numerical factors too). The relation (3.14) means that
the reducible and irreducible contributions to Fy,, are of
the same order.

Let us now discuss the role of isolated vortices. They
enter the formalism via the value t< in (3.9-3.11). On
the solution (3.12-3.13), the renormalized mean strain
and vorticity grow by the same law and so their corre-
lation times; if there exist small-scale isolated vortices,
their measure should not grow with ¢ since t. has the
same scaling £2/3 as 7,. If we assume for a moment that
te ~ & with a > 2/3, we come to a contradiction. In-
deed, it follows from (3.9) that (ww) ~ £* and the strain
correlation function is also ~ £® according to Appendix
B. Therefore, A ~ £%/2 then the total time of passing
from £ to 1 is £/X ~ £'7%/2 which could not be less than
it’s part t.. The formalism developed allows us also to
see that ¢ dependencies of the correlation functions are
insensible to the possible presence of coherent large-scale
vortices. The (yet unknown) statistics of such vortices
could influence only the £-independent part of t.. At
sufficiently small scales, the first (~ £2/3) term in the
r.h.s. of (3.9-3.11) will be the main one and will deter-
mine the correlation functions.

We have considered a solution dependent only on the
enstrophy production rate P, neglecting the existence of
high-order pumping rates P,,. The justification of this
approach as well as the behavior of odd correlation func-
tions of w are discussed in the next section.

IV. HIGH-ORDER INTEGRALS OF MOTION
AND ODD CORRELATION FUNCTIONS

Let us emphasize that the above statement on non-
Gaussianity has nothing to do with high-order integrals
of motion. One might think that because of the conserva-
tion of arbitrary power of vorticity, the 2nth correlation
function are determined by the input of the 2nth inte-
gral of motion and are independent of lower moments.
This is not the case since only the flux of squared vortic-
ity is constant in the inertial interval while higher fluxes
grow with k£ due to a contribution to their pumping from
lower moments (the phenomenon of “distributed pump-
ing” [10,22]). Here, we describe that phenomenon.

For the flux of w? stuff in the inertial interval, one gets
in a Kolmogorov manner

([(vi- V1) + (v2- Va)|wiws) = ($rw2 + pawr) = Py .
(4.1)
The rhs of (4.1) is constant at |r; —rz| < L, this constant
is equal simply to the pumping rate of w?. For w* one
gets similarly,
([(vi- V1) + (v2 - Va)wiw]) = (hrwrwi + $awaw]) -
(4.2)
Besides the irreducible part which is the constant Py in

the inertial interval, the correlator in the rhs of (4.2)
necessarily contains the reducible part,
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2{pr1w2){(wr1w2) + 2(daw1 ) (wr1w2) = 2P (wiws),

that changes with r;, = |r; — r3| as the pair correlator
F. Since our pair correlation function F grows as 7,
decreases, then for sufficiently small r;; one can neglect
the constant irreducible contribution determined by P,
in comparison with 2P,F. The analogous analysis can
be performed for all the even fluxes, these fluxes being
expressed in terms of Ps:

(((vi- V1) + (v2 - Va)|wiwp) ~ PP In?=D/3(L /).
(4.3)

Note that for n > 2, the coefficient in (4.3) in contrast to
the case of the fourth-order correlation function cannot
be established in the explicit form.

Thus, the fluxes of the high-order integrals of motion
are nonconstant in the inertial interval. It is worth em-
phasizing that the reason for this phenomenon is the
presence of the effective forcing for higher integrals “dis-
tributed” over scales of the direct cascade which means
the absence of the inertial intervals for the integrals. Let
us stress that the flux change has nothing to do with
nonconservation of the integrals. The enstrophy produc-
tion rate P, thus determines the whole set of the fluxes.
This is actually a justification of the treatment of Sec. III
where we neglected all high-order integrals. The possi-
bility to do so is also confirmed on the diagrammatic
language in Appendix A.

Let us turn now to the investigation of the odd correla-
tion functions of the vorticity. First, we should consider
the contributions of the same type as for the even corre-
lation functions, these contributions being related to the
odd correlation functions of the pumping force ¢. We
introduce the third-order correlation function,

(#(t1,r1)d(t2,r2) (L3, r3))

= P36(t1 - t2)6(t1 —_ t3)x(l'1, T2, 1‘3) y (44)

where x(ri,rz,r3) is actually a function of differences
r;—r;, which tends to zero if any |r;—r;| tends to co. The
characteristic scale where this diminishing begins is the
correlation length L of the pumping force ¢. We assume
also that x(0,0,0) = 1. Then P; in (4.4) is the pumping
rate of w3. With our logarithmic accuracy we can take
X(l’l,rz,l‘3) = 0([1 - 7‘12)0([1 - 7'13)0(L - 1'23), where 6
is the step function. By the methods of Appendix A, it
is possible to derive for the variation of the third-order
correlation function F3 = (w waw3) over P3 the formula
of (3.10) type

6F3 = 5P3/dt (x3(e1, 02, 03)), (4.5)

where @; = pg(t;,t,r;) and the integration in (4.5) is
performed from —oo up to min(t,,%z,t3). The integral
over time in (4.5) can be again estimated as /) where
A ~ (P£)'/3 is the effective stretching rate. Then we get
after integration of (4.5) over dP;,

Fy ~ Ps¢/X ~ (P3| Py/*)E2/3. (4.6)
We see that for large £ = In(L/r) this contribution is
small in comparison with the “normal” value P;¢ follow-
ing from (3.13).

The third-order term (4.4) give rise also to the contri-
butions to all other odd correlation functions. The con-
tribution to the 2n + 1-th order correlation function of w
is estimated as Fp, 41 ~ F3F2"_1, which follows from the
generalization of (4.5) leading to the relations of (3.11)
type. We see that this contribution is again smaller
in £€71/3 than the “normal” estimation (P,£¢)?"*+! that
would follow from (3.13). If we estimate the contribu-
tions to correlation functions F5,; associated with the
high-order pumping rate P,,, then we conclude that the
contributions contain additional powers of the small pa-
rameter £ /3 in front of (P2¢)?"+! and can consequently
be neglected (see also Appendix A). We conclude that
the contributions to the odd correlation functions of the
vorticity w related to high-order production rates P, are
small in comparison with the even correlation functions,
this smallness can be estimated as £~1/3,

Because of this smallness the question arises: does P
actually determine the main contribution into Fz,,;? Al-
ready from (4.1) it is clear that there are contributions
into the third-order correlation function that are nonzero
even if the third-order correlation function of the pump-
ing is zero. To evaluate such contribution independent
on P;, we rewrite (4.1) in the following form:

1
Vla/ drﬂ (0a5w1w2> = Pz, (4.7)
2

where integration is performed along any curve going
from r; to r;, and o, depends on the point r on this
curve. The solution of this equation is written as

[ dro(0agunen) = (1/2)Papa + cagVs(e),  (4.9)

where p = r; —r;. The second term in the r.h.s. of (4.8)
corresponds to the above contribution (4.6). Indeed, this
contribution is related to large scales and is consequently
logarithmically dependent on scales. This means that the
contribution (4.6) gives (oogwiwz) =~ (1/2)Fseqp since
this average should be isotropic and the term propor-
tional to d.g is absent since o,g is traceless. After inte-
gration we find,

1
[ draGagurin)  (1/4)cas Vi (Fss®),
2

which corresponds to the last term in r.h.s. of (4.8). The
first term in the r.h.s. of (4.8) means that there exists
the p-independent contribution to Fs, this is just the con-
tribution which we are looking for since it is determined
solely by P,. If P; is absent then F3 ~ P, i.e., even
smaller in logarithmic parameter than the contribution
related to P;.

Analogously the higher-order odd correlation functions
of w can be examined. For this we should start from the
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expression (4.3) and produce the same analysis as for
F3. We thus get Fy, 1 o< £2*=1)/3 if the odd correlation
functions of the pumping are absent and Fj,; oc £27/3
in a general case. We conclude that in any case, the odd
correlation functions of w are suppressed in comparison
with the even ones. The above results enable us to find
also the “distributed” fluxes of odd integrals of motion.
Evaluating the average (¢;w]w}) arising instead of r.h.s.
of (4.2) for the 2n + 1-th flux, we find from (3.13, 4.1,
4.6) the estimate for this flux: P3(P¢)2(®~1/3. Of course
for n = 1 this estimate gives the third-order flux Ps, for
n > 1 this flux grows with decreasing scale. Therefore,
the situation for odd fluxes is the same as for even fluxes:
at n > 1 the “distributed” flux of the 2n + 1-th order
is larger than the constant P,,.; related to the direct
pumping.

To conclude, the even correlation functions are deter-
mined by P,, while the odd ones also by Ps.

CONCLUSION

We have found the correlation functions of the vortic-
ity in 2D turbulence at the region of scales where the
direct cascade exists. The true expressions for the cor-
relation functions differ from those obtained from sim-
ple dimension estimates by logarithmic factors. In par-
ticular, the shape of the energy spectrum is as follows:
E(k) ~ Pzz/sk_:’ﬁ“l/3 where £ = In(kL); it does not de-
pend on a particular value of the unknown dimensionless
constants. The same is true for higher-order correlation
functions: we can find the £ dependencies but not con-
stant factors. The fact that the true form of the pair
correlation function coincides with the result of the one-
loop calculation means that there is no vertex renormal-
ization for a logarithmic regime. Let us stress that our
logarithmic solution does not depend of the statistics of
the pumping. The probability distribution function de-
pends only on the enstrophy production rate P; while the
space and time dependencies of the correlation functions
are universal, i.e., pumping independent.

Other hypothetical powerlike steady distributions
[6,7,9] with the exponents larger than 3 correspond to the
correlation functions of the velocity gradients that tend
to constants as £ — oco. This contradicts to the relation
between 7, and a,b and c given at Sec. III: if the cor-
relation functions of a,b, and ¢ turned into constants as
& — oo, then 7, o« £ and the pair correlation function of
the vorticity F' = P>£ would be logarithmic in contradic-
tion with the initial assumption. Therefore, distributions
with a nonlogarithmic vorticity correlation function can-
not be turbulent steady solutions under the action of a
general pumping. This has a clear physical meaning: if
there existed some steeper spectrum E(k) oc k™% with
z > 3, then it would produce the main strain due to
largest scales whatever the temporal correlations may be.
Therefore, a small-scale vorticity behaves like a passive
scalar in such a field and the appearance of the pumping
with nonzero vorticity influx would produce a logarithmic
regime which corresponds to z = 3. This follows from the
statement that whatever the statistics of the large-scale
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velocity field may be, the mean stretching rate (the Lya-
punov exponent) is positive so that the stretching is expo-
nential and the correlation functions of the passive scalar
are logarithmic [13]. Let us emphasize that the univer-
sality at small scales is proved only for steady turbulence
under the action of pumping; it might be that decaying
turbulence produces different small-scale asymptotics for
different initial distributions [20].

Note that our logarithmic regime does not correspond
to the absence of coherent vortices. We show that the
stretching process is suppressed inside the vortices and
that such “islands of vorticity” give negligible contribu-
tion into the correlation functions at small scales (see also
[23]). The main contributions are produced by the “sea
of strain” which renormalizes itself in a way described
above. In addition to the present theory of the direct
cascade, the future complete theory of two-dimensional
turbulence should include also the description of the in-
verse cascade and coherent vortices.

The set of the correlation functions found corresponds
to nonzero fluxes of all vorticity integral of motion though
only the enstrophy flux is constant in the inertial interval
while higher fluxes vary with the scale. Recent numerics
[14] seem to confirm the prediction made first in [10]. Our
picture is based on the assumption that P; is not small in
comparison with another P,. If there exists such n that
P, > (P;)™? then an intermediate asymptotic appears
which requires a special consideration.

The account of viscosity could be readily incorporated
in the above formalism. Viscosity makes the vorticity
field to be smooth at r < L,;, so that the pair correla-
tion function, for instance, behaves as r2 [4,11,12]. Yet,
viscosity gives a negligible contribution into the correla-
tion functions in the inertial interval. Formally, this is
related to the fact that there are no ultraviolet diver-
gences in the perturbation series for the vorticity cor-
relation functions. If, however, one considers vorticity
gradients, there should be an anomalous scaling related
to the effects of viscosity and to ultraviolet divergences.

Our results allow also for the prediction on the cor-
relation functions of a passive scalar § advected by 2D
turbulence with an arbitrary Prandtl number. Since the
equation for @ formally coincides with the one for w then
the scale dependences of the correlation functions of 6
and w should coincide at the scales L,;;, < r < L:
(0™ (r1)0™(r2)) =~ [P2In(L/ | Ty — r2 |)]*"/3, etc. Here
P, is the flux of the squared scalar.
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APPENDIX A: DIAGRAM REPRESENTATION
OF CORRELATION FUNCTIONS

It is natural to investigate fluctuation effects in a sys-
tem with many interacting degrees of freedom in terms
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of a diagrammatic technique. In this appendix, we will
make use of the diagram technique especially adapted for
hydrodynamical systems. Such a technique was first de-
veloped by Wyld [24], who studied velocity fluctuations
in a 3D turbulent fluid. The next step was made by Mar-
tin, Siggia, and Rose [25], who generalized the Wyld tech-
nique for a broad class of dynamical systems. The text-
book description of the diagram technique is presented
in the monograph by Ma [26]. The diagram technique
may be formulated in terms of path integrals as was first
suggested by de Dominicis [27] and Janssen [28]. The
textbook description of this method can be found in the
monograph [29].

Let us remind the reader that we consider 2D turbu-
lence in the region of the direct cascade. We will utilize
the so-called quasi-Lagrangian variables [2,3] enabling
one to avoid the masking effect of sweeping leading to
infrared divergences in the original Wyld diagram tech-
nique. The diagram technique in gL variables is gener-
ated by the effective action I = I3y + ILint, where

Igy = /dtdzrpatw

2
+§Pz / dt d®ry d®ry prp2x(r1 — r2), (A1)

Lot = / dt &rp(v — vo)Vw, (A2)
constructed in accordance with (1.3). In (A2) v is the qL-
velocity, 8; = 0/0t, the subscript 0 denotes the velocity
taken at the origin, w = €43V 4vg is the vorticity and p is
an auxiliary field enabling us to express susceptibilities
to the external force acting on the system in terms of
correlation functions. For example, the Green’s function
G is the pair correlation function: G = —(wp). The
function x(r; —rz) in (A1) represents the pair correlation
function of the pumping “force” ¢ figuring in (1.3) which
is explained in the Introduction to be § correlated in time
(in gL variables). The function x is normalized by the
condition x(0) = 1, then P, in (A1) is the production
rate of enstrophy. Now all correlation functions can be
written in the form of functional integrals, for instance,

F = (wyws) = / DuDp exp(il)wiws, (A3)
where the integration DwDp is performed over all func-
tions w(t,r), p(t,r) [25]. Note that (pp) = 0, the anal-
ogous property is true for higher-order correlation func-
tions of the field p.

The structure of (A2) shows that we should treat corre-
lation functions of the difference v, —vgo. Consider as an
example the pair correlation function ((via — voa)(v2g —
vog)), where the subscripts 1 and 2 mean that the corre-
sponding velocities should be taken at the points r; and
r2, respectively. In the main logarithmic approximation
the correlation function can be written as

1
{(via — voa)(v2p — vog)) = Z(Jaal‘l T2 — T1872q) F

1
+Z(6aﬁr1 *T2 — T1aT28

+T1ﬂr2a)Fa ] (A4)
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where F is defined by (A3) and F, designates the pair
correlation functions of the strain sog = V,vg + Vgua:

Fy(r1,72) = (822(T1)822(r2)) (A5)

where s., designates the component of the strain along
the axis X. Utilizing the expression (A4), we can find
that in the main logarithmic approximation,
((Ula - ’an)w2) = —(1/2)€aﬂT1gF . (A6)
Analogously the expression for the following pair corre-
lation function can be obtained:
((v1a — voa)p2) = (1/2)€apr15G . (A7)
The above relations mean that in the principal logarith-
mic approximation the difference v — v can be written
as
Vo — Voa = —(1/2)€agrgw + sagrg = 0aprs, (A8)
where 0,3 = Vgv,(r). The relations between the cor-
relation functions of s,g and w are treated in Appendix
B.

Starting from (A1, A2) and definitions of the type of
(A3), we can formulate the conventional perturbation se-
ries for the correlation functions of w and p, e.g., for F
or G. The series is produced by the expansion of exp(iI)
in I;ns, given by (A2). It will be also convenient to ex-
pand exp(:I) in P;x. Then the objects which arise in the
perturbation series are the products P,x and the bare
Green’s functions, the latter function being

Go(tl, rl,tg,l‘z) = —’LH(tl - t2)5(r1 - 1‘2) N (Ag)
where 0(z) is the step function. The terms of the series
can be represented by Feynman diagrams, where lines
will correspond to the Green’s functions (A9) only (since
Fy = 0 in this case) and the vortices are determined by
(A2). We will designate the Green’s function by the com-
bined dashed-solid line where the solid part corresponds
to the field p and the dashed part corresponds to the field
w or so3. The Green’s function can be attached to the
product Py, which will be designated by the rectangu-
lar. Then the first contribution to the pair correlation
function F' can be represented as

where the integration is implied over t; = t5,r;,r2. The
high-order diagrams contain the interaction vertex deter-
mined by (A2).

Consider the diagrammatic series for the dressed
(whole) Green’s function G, which is a function of the
time difference t; — ¢t and of both coordinates r; and r,
since we lost space homogeneity at passing to qL vari-
ables. A diagram for G can be presented as the “spine”
constructed from Gy lines only and the “ribs” made from
Gy lines started from P,x rectangles and finished at the
“spine.” Such a “spine” can be represented as

—%----—— ¢
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where only the piece of a diagram adjoined to the “spine”
is depicted.

We see that the calculation of G can be performed in
two steps: first we should perform the summation of di-
agrams with different “ribs” attached to a given “spine”
and then sum over all “spines.” The first step (summa-
tion of “ribs”) is reduced to averaging of a given “spine”
with attached w or s,g fields over the statistics of these
fields. We can inverse the order of these operations and
find first G which is the sum of all “spines” with the at-
tached fields and then average the result over the statis-
tics of these fields. It can be written as

G(t1,r1,t2,12) = (G(t1,r1,t2,72))0 - (A10)

The object G can be interpreted as the Green’s function
of a passive scalar in a given external velocity field char-
acterizing by the velocity gradients 4.

The calculation of G is reduced to the summation of
the “ladder” sequence of diagrams of the type depicted
above. This summation leads to the diagrammatic equa-
tion which can be depicted as

_____ S — + Y S

where the thick combined line designates the function G,
the thin combined line designates the bare function (A9)
and the vertical dashed line designates the “external”
field o, [over which the averaging in (Al1) should be
performed]. This equation can be written analytically,
after the differentiation with respect to t; it takes the
form

1o} .
—5——g(t1,!‘1,t2,l‘2) = —zé(tl — tz)&(l’l — 1‘2)
(31
- ((vla - vOa)Vla

1
- Evlaweaﬁrlﬁ) g(tl’ ry, t27 1'2) ’
(A11)

where we have utilized the explicit expression (A9) and
also (A8). To solve the equation (All), note that the
equation practically coincides with the Eq. (1.3), which
has the formally exact solution (3.3). The only difference
is in the term proportional to the vorticity gradient V,w.
Without this term, we find analogously to (3.3)

G(t1,71,t2,v2) = —i0(t1 — t2)6(0(t1,t2,11) — T2).
(A12)
The term with V,w in (All) can now easily be taken

into account by introducing into r.h.s. of (A12) the extra
factor ) controlled by the equation

0 1
—Y(t1,t2) = ivaw(tlagl)eaﬂglﬂy(tla t3), (A13)

oty

with the initial condition Y(¢,t) = 1. A solution of the
equation (A13) is an ordered exponent which contains
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Vw in the argument. Because of the logarithmic char-
acter of the dependence of all the correlation functions
of w, the operator of the type rV figuring in (A13) kills
one power of the logarithm in the correlation functions.
Therefore, the effects related to ) can be neglected with
our logarithmic accuracy and we will omit this factor be-
low.

Now we aim at finding a representation for correla-
tion functions of w analogous to the expression (A10)
for the Green’s function. Unfortunately the direct gen-
eralization of this procedure is impossible: because of a
nonlinear dependence of the correlation functions on the
pumping, one cannot restrict the consideration to a single
“spine.” Nevertheless, we can arrive at the representa-
tion of the (A10) type but for variations of the correlation
functions over P,. Let us demonstrate this considering
the diagrams, e.g., for § F. These diagrams will contain a
marked rectangular corresponding to § Px. We can find
two “spines” started from this marked rectangular and
going to the end points of a diagram. This situation is
represented in the figure,

> - - -- X I

where the crossed out rectangle designates 6 P; x. Now
we see the reason for taking a variation: we obtain two
marked “spines” attached to the marked rectangle.

As before we can calculate 6 F in two steps. The first
step is the summation over “ribs” that reduces to the
averaging over the statistics of the fields attached to the
“spines,” and the second step is the summation over all
“spines.” We again inverse the order, then the summa-
tion over “spines” will produce two G functions, attached
to § P;x and the result should be averaged over the statis-
tics of 0. Using the explicit expression (A12), we find

(SF(tl,rl, tz,l‘z) = 5P2/dt <X(p)>a N (A14)

where p = p(t1,t,r1) — o(t2,t,r2) and the integration
over t is performed from —oco to min(ty,t2). Of course
for the case of P, independent & the relation (A14) re-
produces (2.6).

Let us make some remarks concerning higher-order cor-
relation functions of w. The variation of these correla-
tion functions over P, can be found by direct generaliza-
tion of the above method. Any diagram representing nth
order correlation function (w(t;,r1)w(tz,r2)...) has two
“spines” attached to the marked rectangle and a num-
ber of “ribs,” some “ribs” have “free” legs ending at the
points riy. An example is given below where a diagram
for a fourth-order correlation function Fj is depicted
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el 2.

Here, the points 1 and 2 are the ends of the “spines” at-
tached to the marked rectangle and the points 3 and 4
denote the ends of two “free” legs. As above, the sum-
mation of all the diagrams will give the result which can
be thought of as being averaged over the statistics of & of
the sum of “spines.” The sum of the spines will give the
same term as in r.h.s. of (A14) and the presence of “free”
legs leads to arising a product of w taken in correspond-
ing points. Thus, we come to the following expression for
the variation of the fourth-order correlation function Fy
over Ps:

8F4(t1,r1,t2,r2,t3,T3,t4,T4)

= 6Pz<w3w4/th(P)>a +---, (Al5)

where g is the same as in (A14) and w3 and wy desig-
nate the values of w taken in the points r3 and ry. The
dots in (A15) designate the sum of terms which can be
obtained from the one presented in r.h.s. of (A15) by
the permutations of the subscripts 1,2,3,4. The point
is that there exist diagrams where “spines” end at two
arbitrary points not only at 1 and 2 as in the presented
figure. The relations analogous to (A15) can also be for-
mulated for higher-order correlation functions: they will
differ from (A15) only by the number of w fields appear-
ing as the factors at the integral and by the number of
permutations.

Apart from pumping the enstrophy, the external force
¢ in (1.3) pumps also all higher-order integrals of motion
P,. Therefore, the question arises concerning respective
contributions to the correlation functions. In our formal-
ism, the presence of P, means that, besides (A1, A2), we
should take into account also the terms of higher order
in p in the effective action. The term corresponding to
P, has the following form:

Iy = 5"1194 / dt d*ry d?ry d2rs d2r,

XP1P2P3Pax4(r1,T2,T3,Ty), (A16)

where the function x4(r;,rs,r3,r4) is actually the func-
tion of the differences of coordinates, the characteristic
scale of this function is L and x4(0,0,0,0) = 1. The con-
tributions to the effective action associated with other
integrals of motion P, can be introduced in a similar
way.
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As above, it is possible to establish some relations for
the variations of the correlation functions of w over P,.
Let us consider the four-point correlation function Fy =
(w1wawsw,) as an example. Its variation over P, in the
diagrammatic language can be represented schematically
as follows:

Ep—

Here the crossed out quadrangle designates the product
0P4X4, there are four “spines” attached to the quadrangle
and a set of “ribs” attached to the “spines.” As above,
the summation over “ribs” is reduced to the averaging
over the statistics of w and, finally, we come to the ex-
pression

6F4(t1, r, t2a r2, t3,l‘3, t4’r4)

= 5P4/dt<X4(91,92a93, 94)>,,,a (A17)

where @, = p(t1,t,r1) and so further and the in-
tegration over the time ¢ is performed from —oo to
min(ty,tz,t3,t4). We see that the structure of (A17) is
very close to one of (A14). The analogous expressions can
be derived also for variations of other correlation func-
tions of w over all P,. For example, the variation over
P3 is as follows:

6F4(t11 r, t27 ra, t3,l‘3, t47 l’4)

= 6P, [dt(wixaen enes)), + - (A9
The reason for arising ws = w(ts,rq) in (A18) is the
same as in (A15), the dots in (A18) as in (A15) designate
the sum of terms which can be obtained from the one
presented in r.h.s. of (A18) by making permutations of
the subscripts 1,2, 3, 4.

Comparing (A17) with §F,/6P,, determined by (A15)
one concludes using estimates (3.13) that the contribu-
tion to Fy related to P, could be neglected at large
enough logarithms. The same assertion is valid for all
even correlation functions: the contributions to the cor-
relation functions due to P, are small at » > 2. This
means that the terms I, in the effective action analo-
gous to (A16) for n > 2 are small and we actually can
restrict ourselves by the action (A1, A2). We already saw
this by considering fluxes (4.3).

APPENDIX B: FROM VORTICITY TO STRAIN

In this appendix, we consider the transformation from
the vorticity to strain correlation functions. The starting
point of the transformation is the relation



3896

&R
va(r) = —ea.,V.,/E—ln Ir+R|w(®R), (Bl)

enabling one to reconstruct the velocity v, from the vor-
ticity w. From (B1) it follows that the pair correlation
function of the velocity derivatives o,g can be written in
the following form
(0ap(r1)ou(rz)) = €av€up V14 V15V 2, V2, T (r1,T2),
(B2)

where

dR2

d2
Y(ry,r2) /Rl In|Ry — 1y |

Xhll Rz—l’z 'F(Rl,Rz) (B3)
Here F(R;,R2) = (w(R1)w(R2)) is the pair correlation
function of the vorticity. In what follows, it is important
that this function depends on coordinates via a logarith-
mic function. Our aim is to establish how the operations
(B2-B3) influence that logarithmic dependence. We start
from obtaining some general relations, then we consider
the particular case of a simultaneous correlation function
depending on |R; — Ry| and, finally, we consider most
complicated case of a different-time correlation function.
Our consideration culminates in the proof that the cor-
relation times of the strain and vorticity are the same for
logarithmic correlation functions.

The integration over angles in (B3) can be performed
using the relations (see [30] 2.6.36.9 and 2.6.36.15)

2w m
A dg cos(mep) In(R? — 2Rrcos p + %) = —-% (%) ,

2r
/ dpln(R? — 2Rrcosp +r?) =4rInR, (B4)
0

where m = 1,2,... and R > r. From these relations it
follows for an arbitrary function f,

2w 27
/ dy, / dypa In(R? — 2R, 7 cos p; + 72)
0 0

x In(Rj — 2Rar; cos 2 + 73) f [cos(p1 + p2 + )]

= 167('2 In Rl In R2f0

+87? Z

(732 )mfm cos(my) (BS)

where the inequalities R; > r; and Ry > r, are implied
and f,, are the Fourier components
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2m
fm = EI;A dy exp(itm) f(cos ) .

Utilizing the relation (B5), we can rewrite the expression
(B3) in the form of the series

o0
1‘1,1'2 E T ( 1‘1,1'2
m=0

where

To(l’l,l‘g) :/ dR1R1/ dRsz
0 0
X In [ma.x(Rl,rl)] In [max(Rg, 7‘2)} Fo(Rl, Rz) )

Tm(rl,rz) =/ deRI/ ngRg
0 0

x —1—5 (u1u2)™ Fn (R, R) cos(myp) . (B6)

2m

Here ¢ is the angle between r; and.r;, m = 1,2,...,
U = 1‘1/R1 ifr; < R, and u; = R1/1‘1 if ry > R,
and u; is analogously defined. The functions F,, are the
Fourier transforms

2w
Fu(BaBa) = 5= [ déexplimo)P(R1,Ra), (BT

where ¢ is the angle between R; and R, and the integra-
tion in (B7) is performed at given values of | R; |= R,
and | R2 |= Rz.

It is not very difficult to recognize that

Py
31‘161‘2 -

/ dR Ry / dRyR,Fo(Ry, Ry) .

T1T2
With a logarithmic accuracy, it is reduced to

8’1 1
0 = —rirgFo(r1,72) -

B
61‘1 87'2 4 ( 8)

Comparing this expression with (B2), we conclude that
the contribution to the correlation function (B2) associ-
ated with Y has the same logarithmic dependence as the
correlation function F of the vorticity. The further anal-
ysis is based upon the fact that the functions F,, with
m > 1 have one power of the logarithm less than Fy. This
is the consequence of the definition (B7) since the main
logarithmic contribution determined by the isotropic part
of F(R1,R;) is canceled at the integration over angles in
(B7). Therefore, we should extract in the functions T,,
(m > 1) figuring in the expansion (B6) only the terms
that contain an additional logarithmic integration.
The function T; can be rewritten as

1 oo [o} 1 r2
Tl(l'l,l‘z) = §r1r2 (/ de / dRzFl(Rl,Rz) + /(; dR]_A dRz(l - R%/T%)(l - R%/T%)Fl(Rl,Rz)
0 0

—/ dRI/ dRy(1 — R2/r2)Fy(Ry, R2) —/ dR2/ dR1(1—R§/rf)Fl(Rl,Rz)>.
0 (1] 0 1]

(B9)
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The first term here does not contribute into (oeg0,,)
since the differentiation in (B2) kills the product r;r;, the
second term does not contain a logarithmic integration
and, consequently, can be omitted, the third and fourth
terms in (B9) contain the logarithmic integration, but
they will be killed by the differentiation in (B2) since
they are linear in ry or r;. Thus, we conclude that the
term Y; does not produce any relevant contribution into
(CapOuy)-
The next function T3 can be written as

Tz(l‘l,rz) = %cos(2cp)/ dR1R1/ dR2R2
0 0

XFz(Rl, Rz)(u1u2)2 . (BIO)
Let us pass to the variables R,7, where R; = Rp and
R2 = R/n. Then the expression (B10) acquires the form

1 oo
Tz(l‘l,rg) = Z [2(1‘11‘2)2 - 1‘%7‘%] / dR/R
0

x /°° dn/n [1 —0(ry — Ry)(1 — R%/"f)]z
0

x [1—8(r2 — R2)(1 — R%/r3)]” Fa(Rn, R/n)
, (B11)

where 6 is the step function. For a logarithmic function
F(R;,R2) the asymptotics of Fz(Rn, R/n) are Fy x 72
at small ) and F, o< 72 at large 7. It ensures the conver-
gence of the integral over 7 in (B11). The convergence of
the integral over R in (B11) at small R is guaranteed by
the presence of the prefactor at Fy(Rn, R/7), at R larger
than r;, 7, this prefactor is equal to unity. Thus, we con-
clude that the integral in (B11) has a logarithmic char-
acter and, therefore, the term Y,(r;,r;) produces the
relevant contribution into (B2) which should be taken
into account in addition to the contribution associated
with To (l‘l, rz).

As far as the contributions to (B2) associated with
higher-order terms Y,,(r;,r;) are concerned, they can
be neglected with a logarithmic accuracy. The point is
that the term Y,,(r1,r2), in accordance with (B6), is de-
termined by the integral containing the factor (uju;)™,
which at R;,R; > ry,ry is (rir2/RiR;)™, this de-
pendence ensuring the convergence of the integrals over
R, and R; for m > 3. It means that no additional
logarithmic factors are produced at integrations giving
Tm(ri,r2). We, thus, conclude that only the terms in
(B2) associated with Yo and Y, should be taken into
account with a logarithmic accuracy. That gives us the
final answer following from (B8, B11)

V1,V18V2,V2, T (1, r2)

1

1
] Z5aﬁ5,wFo(7‘1,7‘2) + 5(6,,,‘63,, + 000 0p,

dR [ dn R
- aﬁ‘suv)/f/7F2 (Rn, ;) . (B12)

Here, the integral over R should be cut off from below
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on the scale determined by r;,7; and from above on the
external scale L. Taking into account (B2), we conclude
that the first term in (B12) reproduces (in the main log-
arithmic approximation) the pair correlation function of
the vorticity w = €43V ,vg and the second term in (B12)
gives us the leading contribution to the pair correlation
function of the strain s,g = 1/2(Vavg + Vgva).
Consider now the particular case

L
FR,R))=¢g{lIn ——— ),
( 1, Ra) y(anl_R2|)

corresponding to the simultaneous correlation function.
Then at calculating (B7), we can believe that

(B13)

ma.x(Rl, Rz)

F(RI,RZ) ad g(ﬁ) +g'(£) In | Rl _ Rz | ’ (B14)

where £ = In[L/max(R;, R;)]. Substituting (B14) into
(B7) and using (B4), we find Fy = g(£) and

2
(%:) if R < R,

2
%(%) if Ry > R,

D=

Fz(Rl,Rz) ~ g’(g) X . (B15)

To calculate T3 corresponding to (B15), it is worthwhile
to return to (B10). The integral in (B10) will be deter-
mined by the region R; ~ R, (at large enough R;, R;)
and, therefore, £ can be substituted by In(L/R;). Af-
ter this substitution the integral over R; can be taken
explicitly which gives

Y(r1,r2) & 1—16 [2(e1r2)? — r2r2] / dég'(¢).  (B16)

The upper limit in this integral can be estimated as
In[L/max(ry,72)]. Then with the logarithmic accuracy
J dég'(€) = Fo and the substitution of (B16) into (B2)
gives,

(0ap(r1)ouu(rs))

1
~ 5(36,,“63,, = 8au0pyu — 8apduy ) Fo(ry,72), (B17)

where we have added also the term originating from Y.
We see that the simultaneous pair correlation functions,
both of the vorticity and of the strain, are determined by
the single function Fg.

To prove that the correlation time of the strain is
of the same order as the vorticity correlation time
we consider the different-time pair correlation function
(sap(t1)suy(t2)) and show that it decays with ¢; — ¢,
by the same law as the pair vorticity correlation func-
tion. We assume ¢; > t;. As in the previous Appendix,
we consider the variation of the strain correlator under
the pumping variation and show that it is of the same
order as the variation of (w(t;)w(tz)) for any time dif-
ference t; — t;. Our proof will be based on the explicit
expression (3.5) for this variation. It is obvious from
(3.4, 3.8) that for the time difference |t; — t;| S o1
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(where o is the characteristic value of V,vg) the func-
tion 6F(t1,r1,t2,r2) does not differ essentially from its
simultaneous value. Therefore, the above reasons con-
cerning the coincidence of the simultaneous correlation
functions are valid in this case. Further, we will treat
the case of a large time difference t; — t3 > o1, all the
more we expect the correlation time to be large.

As was explained in the main text, to find p in (3.5),
we should first solve the Eq. (3.4) in the time interval
ty < t < t with the initial condition g, (t1,t1) = r1. The
formal solution of this equation is g, (t1,t) = W(t1,t)r1,
where 1 is the matrix which can be written in the form
of the antichronological exponent:

W(ty,t) = Texp (— /ttl dt'&(t’)) )

Incompressibility condition makes & traceless so that the
antichronological exponent in (B18) has the unitary de-
terminant. A 2 X 2 matrix with the unitary determinant
can be written as

(B18)

Wog = angng + Bnamg + a tmamg, (B19)

where n and m are orthogonal unit vectors and a > 0.
Actually at t; —t2 > 0~ 1, we have @ >> 1 so that the last
term in the expression (B19) for wag can be neglected.

If t; — t < 7, then the matrix &(t) in r.h.s. of (3.4)
can be regarded as constant. It means that the direc-
tions of the main axes n, m do not depend on t; — t;
and a grows exponentially with t; — t2, the coeflicient
B in (B19) grows proportional to o (it can be checked
directly). The same is true up to the values t; —t < 7.
Then the argument p in (3.5) is (a1 nang+Binamg)ris —
(a2nang + B2namg)rag, which can be rewritten in the
form (azneng + Penamg)(yris — r2p). Here, v is some
(exponential) function of t; —t;. Therefore, we encounter
the situation when the correlation function is expressed in
terms of the difference yr15 —723. Applying the same ar-
guments as for the simultaneous correlation function we
again can prove that §(segs,,) is of order of § F. Phys-
ically it is quite natural since we are inside the correla-
tion time of s,g and this correlation is reproduced for
é (SaﬁS‘w).

The vorticity correlation time is of the order of the
transfer time 7,. To show that the strain correlation time
T is of the same order, we assume for a while that 7 <« 7.
and show that this leads to a contradiction. Consider
now the case 7, < t; — t3 > 7. Then the statistics of
o determining the matrix (¢1,¢2) is independent of the
statistics of o(t) determining the evolution of the vector
p in (3.8) for t < t;. Therefore, the averaging over & in
(3.5) can be done in two steps: First we average over the
statistics of o(t) for t < t; and then over the statistics
of o determining the matrix w(t;,t2). The result of the
first averaging is simply the variation of the simultane-
ous correlation function §F (At = 0) but with the space
argument depending on the matrix w(t;,t2), which gives
the variation (3.5) at the second averaging:

5F(t1,r1,t2,r2) = <5F[At = 0, Iﬁ)(tl,tg)l‘l — r2|]> .
(B20)

GREGORY FALKOVICH AND VLADIMIR LEBEDEV 50

In accordance with (B19), averaging in (B20) is averaging
over the statistics of o and B and also averaging over the
angle ¥ characterizing the direction of n. Because of the
isotropy of the statistics, this averaging is reduced to the
integration over 9.

This integration can be performed explicitly if one
takes into account that §F (At = 0) is a logarithmic
function of the space argument. The logarithm ¢ =
ln[L/[w(tl,tg)rl - 1'2” can be divided into two parts:
E =&+ & = In(L/r) + ln[r/|w(t1,t2)r1 - l'2|], the
first being the larger and ¥ independent and the sec-
ond one being ¥ dependent and of an order of unity
at an appropriate choice of the scale r, namely, at
r = max(rz,ar;). Therefore, the function g(€) can be
expanded as g(&;) + g'(£1)€2. We see that averaging g
over angles is reduced to averaging {2 = In(rz/p), where
p? = r2 — 201,73 cos(V — p2) cos(¥ — p1)— 20ry73 cos(¥ —
p2)sin(¥ — 1)+ a?rZcos?(¥ — ¢1) + a®risin(d — ¢1),
and ¢; is the angle between r, and X-axis, ¢, is the an-
gle between r, and X axis and 9 is the angle between n
and X axis. The integral [ di¥€; can be found explicitly
using (B4). For brevity, we give here the result for the
case B = 0 (since for 8 # 0 it will be qualitatively the
same): [£2d9/2m = In(r/R), where

R = max{\/rg —arira cos(p1 — p2) + azrf/4,ar1/2} .
(B21)

We have seen in (B12) that the pair correlation func-
tion of the vorticity w is determined by the zero Fourier
harmonic of F that is in our case the variation of this
correlation function is §Fo = (§F (At = 0,7)), where av-
eraging is performed over a, 3. The pair correlation func-
tion of the vorticity is determined by the second Fourier
harmonic of F that is in our case the variation of this
correlation function is

231

< / %m(r/R) exp(2ig2 -2i¢1)>. (B22)

5Fy = <iap(m —0,r)

The integral over angles can be estimated here as
min(ry/ary, ar;/rz). Taking this into account, we find
after substitution of (B22) into (B12) the estimate
(6F (At = 0,7)) for the second term on r.h.s. of (B12)
[one integration in this term is a logarithmic one, this
integration converts the derivative of 6F(At = 0) over
¢, into §F (At = 0) itself]. Therefore, both terms in the
r.h.s. of (B12) are of the same order. Actually the same
assertion is valid for variations of all correlation func-
tions.

Thus, we come to the contradiction. We suggested
that the correlation time 7 of the strain is less than the
time 7, of the spectral transfer and found that it leads to
the conclusion that the correlation functions of the strain
are of the same order as that of the correlation functions
of the vorticity, which have the correlation time 7,. It
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means that the correlation functions of the strain also
have the correlation time 7,. Formally, it is revealed
in the fact that for 7 = 7,, we cannot treat the time
difference t, —t; 3> 7 since for ¢t; —t3 > 7, our approach
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does not work. Above, we have spoken about correlations
in time, but actually our assumption concerns also the
correlation in space: the vorticity of different scales is
strongly correlated.
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